LM-Evaluation Harness with TGI
Evaluate LLMs 20x faster with TGI via litellm proxy's /completions
endpoint.
This tutorial assumes you're using the big-refactor
branch of lm-evaluation-harness
Step 1: Start the local proxy
$ litellm --model huggingface/bigcode/starcoder
Using a custom api base
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
$ litellm --model huggingface/tinyllama --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
OpenAI Compatible Endpoint at http://0.0.0.0:8000
Step 2: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
LM Harness requires you to set an OpenAI API key OPENAI_API_SECRET_KEY
for running benchmarks
export OPENAI_API_SECRET_KEY=anything
Step 3: Run LM-Eval-Harness
python3 -m lm_eval \
--model openai-completions \
--model_args engine=davinci \
--task crows_pairs_english_age
Debugging​
Making a test request to your proxy​
This command makes a test Completion, ChatCompletion request to your proxy server
litellm --test